Table 2. Table of bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

Numbers in parentheses are estimated standard deviations in the least significant digits.

$\mathrm{Br}-\mathrm{C} 5$	2.012 (2)	N3-C4	1.487 (2)
$\mathrm{Ol}-\mathrm{N} 1$	$1 \cdot 249$ (2)	$\mathrm{Cl}-\mathrm{C} 2$	1.401 (3)
$\mathrm{O} 2-\mathrm{N} 1$	$1 \cdot 242$ (2)	C2-C3	1.501 (3)
$\mathrm{O} 3-\mathrm{N} 2$	1.222 (3)	C4-C5	1.571 (3)
$\mathrm{O} 4-\mathrm{N} 2$	1.230 (3)	C4-C8	1.537 (3)
$\mathrm{Nl}-\mathrm{Cl}$	1.389 (3)	C4-C9	1.528 (3)
N2-Cl	1.457 (3)	C5-C6	1.513 (3)
N3-C2	1.316 (3)	C5-C7	1.525 (3)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	121.9 (2)	N3-C4-C5	$106 \cdot 7$ (2)
$\mathrm{Ol}-\mathrm{Nl}-\mathrm{Cl}$	118.4 (2)	N3-C4-C8	110.3 (2)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{Cl}$	119.6 (2)	N3-C4-C9	109.9 (2)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{O} 4$	124.4 (2)	C5-C4-C8	107.9 (2)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{Cl}$	117.7 (2)	C5-C4-C9	$110 \cdot 7$ (2)
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{Cl}$	117.9 (2)	C8-C4-C9	111.2 (2)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$130 \cdot 3$ (2)	$\mathrm{Brl}-\mathrm{C} 5-\mathrm{C} 4$	108.4 (1)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$113 \cdot 1$ (2)	$\mathrm{Brl}-\mathrm{C} 5-\mathrm{C} 6$	$105 \cdot 1$ (2)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	126.5 (2)	$\mathrm{Brl}-\mathrm{C} 5-\mathrm{C} 7$	$105 \cdot 8$ (2)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	120.4 (2)	C4-C5-C6	112.7 (2)
N3--C2-Cl	$120 \cdot 5$ (2)	C4- $\mathrm{C} 5-\mathrm{C} 7$	113.1 (2)
N3-C2-C3	122.0 (2)	C6-C5-C7	$111 \cdot 1$ (2)
C1-C2-C3	117.6 (2)		
$\mathrm{Ol}-\mathrm{N} 1-\mathrm{Cl}-\mathrm{N} 2$	171.3 (4)	$\mathrm{Ni}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 3$	4.0 (3)
$\mathrm{Ol}-\mathrm{N}-\mathrm{Cl}-\mathrm{C} 2$	-11.4 (4)	$\mathrm{Nl}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-176.3 (3)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{Cl}-\mathrm{N} 2$	-10.7 (3)	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 3$	- 178.9 (3)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	166.6 (4)	$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	0.8 (4)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{Cl}-\mathrm{N}$	-62.0 (3)	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	52.0 (2)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2$	120.6 (3)	N3-C4-C5-C6	167.9 (3)
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{Cl}-\mathrm{Nl}$	119.5 (4)	N3-C4--C5-C7	-65.0 (4)
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 2$	-57.9 (4)	$\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Brl}$	170.5 (2)
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{Cl}$	-179.3 (3)	C8--C4-C5-C6	-73.6 (3)
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3$	1.0 (3)	C8-C4-C5-C7	$53 \cdot 5$ (3)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	168.4 (2)	$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Brl}$	-67.5 (2)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 8$	51.4 (3)	C9-C4-C5-C6	48.4 (3)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 9$	$1-71.6$ (2)	C9-C4-C5-C7	$175 \cdot 5$ (3)

1.457 (3) \AA and to an average value of 1.462 (33) \AA for 2236 bond distances between $s p^{2}$-hybridized C atoms and nitro-group N atoms extracted from the

1986 release of the Cambridge Structural Database (Allen et al., 1979). Two structures containing the 1,1-dinitroethylene fragment have been solved recently (Gilardi, 1988), both also showing evidence of reduced double-bond character in the $\mathrm{C}-\mathrm{C}$ bonds.

The molecular structure contains an intramolecular hydrogen bond between $\mathrm{H}(16)$ and $\mathrm{O}(1)$ with an $\mathrm{H}(16) \cdots \mathrm{O}(1)$ distance of $2 \cdot 00(3) \AA$ and $\mathrm{N}(3)-$ $\mathrm{H}(16) \cdots \mathrm{O}(1)$ angle of $131 \cdot 9(9)^{\circ}$. As a result, the $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$ nitro group is coplanar with an approximate plane defined by the backbone atoms, $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$.

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Boyer, J. H., Manimaran, T. \& Patterson, R. T. (1989). J. Chem. Soc. Perkin Trans. 1. In the press.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A RealTime System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi. Delft Univ. Press, The Netherlands.

Gilardi, R. D. (1988). Personal communication.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). multanit/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1989). C45, 1753-1758

Topochemical Studies. XI.* Structures of α-Acetylaminocinnamic Acid Dihydrate, its Photodimer and the Tetrahydrate of the Photodimer

By Tetsuyuki Iwamoto, Setsuo Kashino \dagger and Masao Haisa
Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 23 January 1989; accepted 6 March 1989)

$=4, \quad D_{m}=1.32(1), \quad D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=$ $0.89 \mathrm{~mm}^{-1}, F(000)=512, R=0.047$ for 1936 unique reflections; photodimer, $1, c$-3-diacetylamino- $t-2, c-4-$ diphenylcyclobutane-r-1,3-dicarboxylic acid tetrahydrate (ACD4), $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} .4 \mathrm{H}_{2} \mathrm{O}, M_{r}=482 \cdot 48$, monoclinic, $P 2_{1} / a, a=19.153$ (2), $b=6.0987$ (4), $c=$ $10 \cdot 2964$ (8) $\AA, \beta=106 \cdot 424$ (7) ${ }^{\circ}, V=1153.6$ (2) \AA^{3}, Z

Table 1. Experimental details

AC2
$465-467$
Prismatic b
$0.20 \times 0.45 \times 0.33$

20
20 to 46
$h 0 l$ for h odd
$0 k 0$ for k odd
125
-20 to 20
0 to 6
0 to 13
0.98 to 1.02
1936
1885
0.008 for 107
$h k 0$ reflections
215
7.3×10^{-5}
0.047
0.058

-0.3306
0.0166
2.9910
3.19
$0.24 /-0.21$
$0.04 / 0.3$

ACD4	ACD
Above 573	Above 573
Prismatic b	Prismatic c
$0.13 \times 0.40 \times 0.21$	$0.15 \times 0.13 \times 0.35$
20	20
28 to 61	17 to 50
$h 01$ for h odd	No condition
$0 k 0$ for k odd	
125	125
-22 to 20	-10 to 9
0 to 7	-12 to 12
0 to 11	0 to
0.99 to 1.00	0.98 to 1.01
1829	1671
1809	1608
0.012 for 111	0.011 for 178
$h k 0$ reflections	$h k 0$ reflections
215	181
7.3×10^{-6}	No correction
0.038	0.063
0.058	0.076
0.0155	
0.0006	-0.0888
3.4278	0.0086
1.18	2.333
$0.17 /-0.16$	2.63
$0.14 / 0.3$	$0.29 /-0.25$
	$0.20 / 0.5$

$=2, \quad D_{m}=1.38(2), \quad D_{x}=1.390 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=$ $0.94 \mathrm{~mm}^{-1}, F(000)=512, R=0.038$ for 1829 unique reflections; photodimer (ACD), $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}, M_{r}=$ $410 \cdot 41$, triclinic, $P \overline{\mathrm{I}}, a=9 \cdot 125$ (2), $b=10.674$ (2), $c=$ $6 \cdot 180$ (2) $\AA, \quad \alpha=82.36$ (2),$\quad \beta=114.79$ (2), $\quad \gamma=$ $79.65(2)^{\circ}, V=522.7(2) \AA^{3}, Z=1, D_{m}=1.28(1), D_{x}$ $=1.304 \mathrm{Mg} \mathrm{m}^{-3}, \mu=0.81 \mathrm{~mm}^{-1}, \quad F(000)=216, R$ $=0.063$ for 1671 unique reflections; $\mathrm{Cu} K \alpha(\lambda=$ $1.54178 \AA$), $T=295 \mathrm{~K}$. α-Acetylaminocinnamic acid is found to be photodimerizable in the crystals of its dihydrate (AC2). The crystal structures of AC2, the photodimer (ACD) and the tetrahydrate of the dimer (ACD4) have been determined. In the crystals of AC 2 the $\mathrm{C}=\mathrm{C}$ double bonds of the nearest neighbours are related by a $\overline{\mathrm{I}}$ with a C $\cdots \mathrm{C}$ distance of $3 \cdot 548$ (1) \AA. The molecule of the dimer has a $\overline{1}$ symmetry in the crystals of ACD and ACD4, which shows that the photoreaction has topochemically occurred in the crystals of AC 2 in spite of the existence of the hydrogen-bond networks.

Introduction. In view of crystal engineering, it is desirable to clarify the effect of hydrogen bonding on crystal structure and solid-state photoreaction. In the present work, it is found that α-acetylaminocinnamic acid dihydrate is photodimerized keeping hydrogenbond networks in the crystals to form a tetrahydrate of the photodimer.

Experimental. Experimental details are listed in Table 1. The crystals of AC2 were grown from an ethanol solution by slow evaporation at 298 K . Photodimerization was effected by exposure of the AC2 crystals to sunlight for a month [the method used by Cohen, Schmidt \& Sonntag (1964)]. The
crystals of photodimer were prepared from the irradiated sample by vapour diffusion (dimethyl sulfoxide-water system) at 318 K for three weeks. The crystals of ACD4 were grown from the water phase at 298 K and the crystals of ACD from the dimethyl sulfoxide phase at 318 K . For all the crystals D_{m} was measured by flotation in aqueous KI. Rigaku AFC-5 four-circle diffractometer equipped with rotating anode (Ni-filtered $\mathrm{Cu} K \alpha$, at 40 kV , 200 mA); $\omega-2 \theta$ scan method (scan speed $4^{\circ} \mathrm{min}^{-1}$ in ω for $\mathrm{AC} 2,6^{\circ} \mathrm{min}^{-1}$ for ACD4 and ACD, scan range in $\omega,(1.2+0.15 \tan \theta)^{\circ}$ for AC 2 and $\mathrm{ACD},(1 \cdot 2$ $+0 \cdot 20 \tan \theta)^{\circ}$ for ACD4], background measured for 4 s on either side of the peak; three standard reflections recorded every 57 reflections. Lorentz and polarization corrections; no absorption correction. All unique reflections within $(\sin \theta / \lambda)_{\max }$ used in structure analyses and refinements. All structures solved by MULTAN78 and refined by blockdiagonal least-squares method (non-H atoms anisotropically). H atoms determined from difference Fourier maps and refined isotropically; $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ minimized with $w=1 \cdot 0 /\left[\sigma\left(F_{o}\right)^{2}+p\left|F_{o}\right|+\right.$ $\left.q\left|F_{o}\right|^{2}\right]$ for $\left|F_{o}\right|>0, w=r$ for $\left|F_{o}\right|=0$. Correction for secondary extinction with $I_{\text {corr }}=I_{o}\left(1+g I_{c}\right)$ applied for the strongest reflections of AC2 and ACD4. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Programs: RSSFR-5 (Sakurai, 1967), MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978), $H B L S-\mathrm{V}$ and DAPH (Ashida, 1973), MOLCON (Fujii, 1979) and ORTEP (Johnson, 1971). Computations carried out at the Crystallographic Research Center, Institute for Protein Research, Osaka University, and at the Okayama University Computer Center.

Table 2. Final atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \beta_{i i} / a_{i}^{* 2}$.				
	x	y	z	$B_{\text {cq }}$
AC2				
$\mathrm{O}(1)$	0.58817 (6)	0.7251 (2)	0.80715 (9)	3.64 (4)
$\mathrm{O}(2)$	0.53436 (6)	0.9816 (2)	0.67238 (9)	3.67 (5)
$\mathrm{O}(3)$	$0 \cdot 42684$ (6)	$0 \cdot 5888$ (2)	0.8516 (1)	4.55 (5)
$\mathrm{O}(4 W)$	0.68941 (7)	0.9919 (2)	0.9190 (2)	$6 \cdot 58$ (8)
$\mathrm{O}(5 \mathrm{~W})$	0.65529 (6)	$0 \cdot 3992$ (2)	0.9851 (1)	$4 \cdot 25$ (5)
$\mathrm{N}(1)$	0.47892 (7)	0.4254 (2)	0.7188 (1)	3.19 (5)
$\mathrm{C}(1)$	$0 \cdot 36982$ (8)	0.5400 (2)	$0 \cdot 4640$ (1)	$3 \cdot 31$ (6)
C(2)	$0 \cdot 34639$ (9)	$0 \cdot 3305$ (3)	0.4891 (2)	$4 \cdot 15$ (7)
C(3)	0.2833 (1)	0.2337 (3)	0.4126 (2)	$5 \cdot 34$ (9)
C(4)	$0 \cdot 2418$ (1)	0.3416 (3)	$0 \cdot 3092$ (2)	5.65 (9)
C(5)	$0 \cdot 2645$ (1)	0.5452 (3)	0.2809 (2)	$5 \cdot 24$ (8)
C(6)	0.32811 (9)	$0 \cdot 6450$ (3)	0.3575 (1)	4.02 (7)
C(7)	0.43288 (7)	$0 \cdot 6664$ (2)	0.5423 (1)	3.05 (6)
C(8)	0.47940 (8)	0.6242 (2)	$0 \cdot 6523$ (1)	2.89 (5)
C(9)	0.53586 (8)	0.7942 (2)	0.7101 (1)	$3 \cdot 00$ (6)
$\mathrm{C}(10)$	0.45176 (8)	$0 \cdot 4206$ (2)	0.8164 (1)	$3 \cdot 16$ (6)
C(11)	0.4540 (1)	$0 \cdot 2029$ (3)	0.8793 (2)	$4 \cdot 60$ (8)
ACD4				
$\mathrm{O}(1)$	$0 \cdot 58829$ (5)	$0 \cdot 6532$ (2)	0.80803 (9)	2.40 (4)
$\mathrm{O}(2)$	0.52934 (6)	0.8995 (2)	$0 \cdot 6565$ (1)	2.75 (4)
$\mathrm{O}(3)$	0.42732 (6)	0.5794 (2)	$0 \cdot 8019$ (1)	$3 \cdot 16$ (4)
$\mathrm{O}(4 W)$	0.68507 (7)	0.9292 (2)	0.9277 (2)	$4 \cdot 30$ (6)
$\mathrm{O}(5 W)$	0.65861 (7)	$0 \cdot 3427$ (2)	1.0171 (1)	3.84 (5)
$\mathrm{N}(1)$	0.48533 (6)	$0 \cdot 3499$ (2)	$0 \cdot 6959$ (1)	1.99 (4)
C(1)	0.36751 (7)	0.5283 (2)	$0 \cdot 4312$ (1)	2.08 (5)
C(2)	0.33976 (8)	$0 \cdot 3238$ (2)	$0 \cdot 4510$ (1)	2.55 (6)
C(3)	0.26678 (9)	0.2770 (3)	0.3939 (2)	$3 \cdot 14$ (6)
C(4)	$0 \cdot 22070$ (8)	0.4316 (3)	$0 \cdot 3168$ (2)	$3 \cdot 46$ (7)
C(5)	$0 \cdot 24790$ (9)	0.6350 (3)	$0 \cdot 2957$ (2)	3.38 (7)
C(6)	$0 \cdot 32047$ (8)	0.6832 (3)	$0 \cdot 3532$ (2)	2.64 (6)
C(7)	0.44705 (7)	0.5873 (2)	0.4751 (1)	1.78 (5)
C(8)	0.50349 (7)	0.5141 (2)	$0 \cdot 6094$ (1)	1.81 (5)
C(9)	0.53999 (7)	0.7110 (2)	$0 \cdot 6946$ (1)	1.98 (5)
$\mathrm{C}(10)$	0.45131 (7)	$0 \cdot 3953$ (2)	0.7903 (1)	2.02 (5)
C(11)	0.44827 (8)	$0 \cdot 2094$ (3)	0.8842 (1)	2.91 (6)
ACD				
$\mathrm{O}(1)$	0.0998 (2)	0.6135 (2)	0.1269 (2)	4.01 (6)
$\mathrm{O}(2)$	0.2743 (2)	0.5365 (2)	-0.0203 (2)	$4 \cdot 13$ (6)
$\mathrm{O}(3)$	0.1788 (2)	$0 \cdot 3183$ (2)	0.2813 (3)	$4 \cdot 17$ (7)
$\mathrm{N}(1)$	$0 \cdot 2906$ (2)	$0 \cdot 4348$ (2)	0.5543 (3)	$3 \cdot 62$ (7)
C(1)	0.6057 (3)	0.2632 (2)	0.5771 (4)	$3 \cdot 81$ (9)
$\mathrm{C}(2)$	0.6085 (3)	0.2104 (2)	0.7977 (4)	4.8 (1)
C(3)	0.6721 (5)	0.0776 (3)	0.9001 (5)	7.3 (2)
C(4)	0.7312 (7)	-0.0032 (3)	0.7904 (7)	11.8 (3)
C(5)	0.7348 (8)	0.0475 (3)	0.5772 (8)	$13 \cdot 3$ (3)
C(6)	0.6725 (5)	$0 \cdot 1800$ (3)	0.4711 (5)	8.2 (2)
C(7)	0.5402 (2)	$0 \cdot 4070$ (2)	0.4542 (3)	3.06 (8)
C(8)	0.3696 (2)	0.4913 (2)	0.4188 (3)	$3 \cdot 13$ (8)
C(9)	$0 \cdot 2427$ (2)	0.5470 (2)	0.1489 (3)	$3 \cdot 29$ (8)
C(10)	0.2015 (3)	0.3494 (2)	0.4771 (4)	3.69 (9)
C(11)	0.1323 (4)	0.2938 (3)	0.6366 (5)	6.7 (2)

Discussion. The final atomic parameters are listed in Table 2.* Thermal ellipsoids of the molecules are shown in Fig. 1, with atomic numbering. Bond lengths and angles are listed in Table 3. Stereoscopic views of the crystal structures are shown in Fig. 2. Geometries of the hydrogen bonds are summarized in Table 4.

* Lists of structure factors, anisotropic thermal parameters, H -atom parameters, bond lengths and angles involving H atoms, and selected torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52014 (36 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

(c)

Fig. 1. The thermal ellipsoids (50% probability) with atomic numbering. The H atoms attached to the O and N atoms are represented as spheres equivalent to $B=1.0 \AA^{2}$. (a) AC2, the molecule related by a \bar{T} is also drawn for the sake of comparison with that of ACD4. For (b) ACD4 and (c) ACD, the atoms related by a T are denoted with a prime.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	AC2	ACD4	ACD
$\mathrm{O}(1)-\mathrm{C}(9)$	1.318 (1)	$1 \cdot 316$ (1)	$1 \cdot 310$ (3)
$\mathrm{O}(2)-\mathrm{C}(9)$	1.216 (1)	$1 \cdot 213$ (1)	$1 \cdot 209$ (3)
$\mathrm{O}(3)-\mathrm{C}(10)$	1.231 (1)	1.232 (1)	$1 \cdot 240$ (3)
$\mathrm{N}(1)-\mathrm{C}(8)$	1.429 (1)	1.446 (1)	1.454 (3)
$\mathrm{N}(1)-\mathrm{C}(10)$	1.339 (1)	1.343 (1)	1.333 (3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.399 (3)	1.393 (2)	$1 \cdot 392$ (4)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.399 (3)	1.393 (2)	1.373 (6)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.467 (2)	1.505 (1)	1.507 (4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.374 (3)	1.384 (3)	$1 \cdot 380$ (6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.381 (3)	1.379 (3)	1.338 (9)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.373 (3)	1.386 (3)	1.372 (10)
$\mathrm{C}(5)-\mathrm{C}(6)$	1-388 (3)	$1 \cdot 380$ (3)	1.380 (9)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.334 (1)	1.560 (1)	1-562 (3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.482 (1)	1.534 (1)	1.532 (3)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1 \cdot 501$ (2)	1.502 (2)	1.491 (4)
$\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)$		$1 \cdot 582$ (1)	$1 \cdot 574$ (3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{O}(2)$	122.5 (1)	123.5 (1)	$124 \cdot 7$ (2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	114.06 (9)	112.95 (9)	111.2 (2)
$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	123.4 (1)	123.3 (1)	123.9 (2)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{N}(1)$	120.6 (1)	121.9 (1)	120-7 (2)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(11)$	122.7 (1)	122.8 (1)	122.3 (2)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	116.7 (1)	115.2 (1)	117.0 (2)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	117.33 (9)	109.86 (8)	110.2 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.8 (2)	$120 \cdot 2$ (2)	$120 \cdot 3$ (3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.7 (2)	$120 \cdot 8$ (2)	$120 \cdot 5$ (5)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	131.6 (1)	125.91 (9)	122.5 (2)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)$		117.00 (8)	$120 \cdot 3$ (2)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}\left(7^{\prime}\right)$		110.71 (8)	$110 \cdot 9$ (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.5 (2)	$120 \cdot 6$ (2)	121.2 (5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.9 (2)	119.6 (2)	119.4 (6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.1 (2)	$120 \cdot 1$ (2)	120.6 (6)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$118 \cdot 0$ (2)	118.7 (2)	118.0 (3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	$116 \cdot 1$ (2)	116.5 (1)	118.3 (3)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	125.9 (2)	124.5 (1)	123.7 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	118.09 (9)	111.86 (8)	$113 \cdot 1$ (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$	124.57 (9)	$121 \cdot 12$ (9)	117.5 (2)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(10)$	$121 \cdot 21$ (9)	123.58 (9)	121.8 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}\left(7^{\prime}\right)$		89.83 (7)	90.1 (2)
(8)-C(7)-C(8')		$90 \cdot 17$ (7)	89.9 (2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}\left(7^{\prime}\right)$		111.93 (8)	113.9 (2)

The monomer molecules in AC2 are arranged nearly parallel to ($\overline{403}$). The molecules related by a b translation are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the carboxyl groups and the amide groups. The molecules related by a $\overline{1}$ at $\left(0, \frac{1}{2}, 0\right)$ are held together by two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds through $\mathrm{O}(5 W)$ and the molecules related by a twofold screw axis at $x=\frac{1}{4}$ and $z=0$ are held together by the other $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds through $\mathrm{O}(4 W)$ and $\mathrm{O}(5 W)$ between the carboxyl groups and the amide groups. $\mathrm{O}(4 W)$ is linked to $\mathrm{O}(5 W)(x, 1+y, z)$ by an additional $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Thus, the two-dimensional hydrogen-bond networks are formed on (001). The crystals are grown along b. The $\mathrm{C}(7) \cdots \mathrm{C}(8)$ distance between the molecules related by a $\overline{1}$ at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is $3 \cdot 548$ (1) \AA, the interplanar spacing being 3.444 (1) \AA for the plane through $\mathrm{C}(1), \mathrm{C}(7), \mathrm{C}(8)$ and $C(9)$.
The crystals of ACD4 belong to the same space group as those of AC2 and their cell dimensions are similar. Hydrogen-bond networks in ACD4 are also similar to those in AC2. The similarity in the crystal structures of the monomer and the photodimer is remarkable as found in benzylidenecyclopentanone derivatives and their photodimers (Nakanishi, Jones,

Thomas, Hursthouse \& Motevalli, 1981; Jones \& Theocharis, 1984). The atom movement Δd in the solid-state photoreaction estimated by the method of Nakanishi et al. (1981) is largest at C(8), $1 \cdot 010 \AA$, and is smallest at $\mathrm{C}(1), 0.344 \AA ; \Delta d=0.539 \AA$ for $\mathrm{O}(4 W)$ and $0.452 \AA$ for $\mathrm{O}(5 W)$.
The periods of the axes a, b and c in ACD correspond to $c,(a+b) / 2$ and b in ACD4. In the crystals of ACD the molecules related by a c translation are held together by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the carboxyl groups and amide groups, and there are additional $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between these groups of molecules related by a $\overline{1}$ at $\left(0, \frac{1}{2}, 0\right)$ as found in ACD4. However, in ACD there exist no water molecules which can participate in the hydrogen bonds along a twofold screw axis as in ACD4 and thus the space group descends to $P \overline{1}$ from $P 2_{1} / a$ of ACD4.

(c)

Fig. 2. Stereoscopic views of the molecular packing in the crystals. The H atoms attached to the C atoms are omitted. For (a) AC2 and (b) ACD4, the a axis points upwards, the b axis onto the plane of the paper, and the c axis from left to right. For (c) ACD, the a axis points from left to right, the b axis upwards, and the c axis onto the plane of the paper.

Table 4. Geometry of hydrogen bonds

Donor (D)	Acceptor (A)	$D \cdots A(\AA)$	$\mathrm{H}^{\cdots} \boldsymbol{A}(\AA)$	$D-\mathrm{H} \cdots A\left({ }^{\text {c }}\right.$)
AC2				
$\mathrm{N}\left(1^{\prime}\right)$	$\mathrm{O}\left(2^{\prime \prime}\right)$	$2 \cdot 982$ (1)	$2 \cdot 12$ (2)	168 (2)
$\mathrm{O}\left(1{ }^{\text {i }}\right.$	$\mathrm{O}(4 \mathrm{~W})$	2.528 (2)	1.53 (2)	170 (2)
$\mathrm{O}\left(5 W^{\prime}\right)$	$\mathrm{O}(1)$	2.862 (1)	2.01 (2)	168 (2)
$\mathrm{O}\left(4 W^{\prime}\right)$	$\mathrm{O}\left(5 W^{\text {ui" }}\right.$)	2.712 (2)	1.89 (2)	178 (2)
$\mathrm{O}\left(5 W^{\text {j }}\right.$)	$\mathrm{O}\left(3^{\prime \prime}\right)$	$2 \cdot 697$ (1)	1.84 (2)	172 (2)
$\mathrm{O}\left(4 W^{\prime}\right)$	$\mathrm{O}\left(5 \mathrm{~W}^{\sim}\right)$	$2 \cdot 806$ (2)	$1 \cdot 90$ (2)	172 (2)
ACD4				
$\mathrm{N}\left(1^{\prime}\right)$	$\mathrm{O}\left(2^{\prime \prime}\right)$	2.935 (1)	2.05 (2)	174 (2)
$\mathrm{O}(1)$	$\mathrm{O}(4 \mathrm{~W})$	2.549 (2)	1.55 (2)	168 (2)
$\mathrm{O}\left(5 w^{\prime}\right)$	$\mathrm{O}\left(1{ }^{\prime}\right)$	2.897 (1)	2.00 (2)	173 (2)
$\mathrm{O}\left(4 W^{\prime}\right)$	$\mathrm{O}\left(5{ }^{\text {" }}\right.$)	2.780 (2)	1.86 (3)	171 (3)
$\mathrm{O}\left(5 W^{\prime}\right.$	$\mathrm{O}\left(3^{\prime \prime}\right)$	$2 \cdot 853$ (1)	1.94 (3)	176 (3)
$\mathrm{O}(4 \mathrm{~W})$	$\mathrm{O}\left(5 \mathrm{~W}^{*}\right)$	2.933 (2)	2.09 (3)	171 (3)
ACD				
$\mathrm{N}\left(1^{\text {I }}\right.$)	$\mathrm{O}\left(2^{\prime \prime}\right)$	3.023 (3)	$2 \cdot 11$ (2)	175 (2)
$\mathrm{O}(1)$	$\mathrm{O}\left(3^{\text {¹) }}\right.$)	2.613 (3)	1.69 (3)	158 (3)

Symmetry code: For AC2 and ACD4 (i) x, y, z; (ii) $x,-1+y, z$; (iii) $x, 1+$ y, z; (iv) $1-x, 1-y, 2-z$; (v) $\frac{3}{2}-x, \frac{1}{2}+y, 2-z$. For ACD (i) x, y, z; (ii) x, $y, 1+z$; (iii) $-x, 1-y,-z$.

For the monomer molecule in AC 2 the torsion angles $\quad \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8), \quad \mathrm{C}(1)-\mathrm{C}(7)-$ $\mathrm{C}(8)-\mathrm{C}(9), \mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1), \mathrm{C}(7)-\mathrm{C}(8)-$ $\mathrm{N}(1)-\mathrm{C}(10)$ and $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(2)$ are $-3 \cdot 1(2), \quad-177 \cdot 0(1), \quad 3 \cdot 2(2), \quad-107 \cdot 1(1)$ and $12 \cdot 1(2)^{\circ}$, respectively. This means that the benzene ring, the $\mathrm{C}=\mathrm{C}$ double bond and the carboxyl group are nearly coplanar, and the amide group is nearly perpendicular to these portions. The length of the $\mathrm{C}(7)=\mathrm{C}(8)$ bond is typical for cinnamic acids (Glusker, Zacharias \& Carrell, 1975). The bond angles $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7), \quad \mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ and $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$ are widened by intramolecular repulsions of $\mathrm{C}(2) \cdots \mathrm{C}(8), 3 \cdot 176$ (2) \AA and $\mathrm{C}(2) \cdots \mathrm{N}(1)$, 3.097 (2) \AA, as found in α-methylcinnamic acid (Bryan \& White, 1982).

The cyclobutane ring in ACD4 has a $\overline{1}$ as expected from the crystal structure of AC2 (the atoms related by the $\overline{1}$ are denoted with a prime hereafter). The conformations of the exocyclic bonds are cis for $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1), 10.0(1)^{\circ}$ and gauche for $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right), \quad 105 \cdot 3(1)^{\circ}$. Thus, the photoreaction has topochemically occurred between $\mathrm{C}(7)$ and $\mathrm{C}\left(8^{\prime}\right)$ in the crystals of AC2 (Kashino, Oka \& Haisa, 1989). The angles $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ and $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$ are enlarged by intermolecular repulsions $\mathrm{C}(3) \cdots \mathrm{C}(5)\left(\frac{1}{2}-x, \frac{1}{2}+y, 1-z\right), 3 \cdot 399(3) \AA$. The $\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)$ bond is lengthened by intramolecular repulsions $\mathrm{C}(1) \cdots \mathrm{C}\left(9^{\prime}\right), 2 \cdot 871$ (1) \AA and $\mathrm{C}(2) \cdots$ $\mathrm{C}\left(9^{\prime}\right), 3 \cdot 090$ (2) \AA.

The cyclobutane ring in ACD also has a $\overline{1}$. The torsion angle $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$ is $13 \cdot 1(3)^{\circ}$ and $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$ is $111 \cdot 9(2)^{\circ}$. The widening of the angles $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ and $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$ is less than that in ACD 4 because of the absence of the intermolecular repulsions. The $\mathrm{C}(7)-\mathrm{C}\left(8^{\prime}\right)$ bond is lengthened as in ACD4. The thermal vibration of the phenyl ring is enlarged
because of the loose packing, the shortest distance being $4 \cdot 05$ (1) \AA for $\mathrm{C}(4) \cdots \mathrm{C}(5)(1-x,-y, 1-z)$.
In the photoreactive cinnamic acids which have no additional intermolecular hydrogen bonds other than those between the carboxylic groups, the nearest $\mathrm{C} \cdots \mathrm{C}$ distances between the $\mathrm{C}=\mathrm{C}$ bonds are in the range of 3.66 to $4.84 \AA$ (cinnamic acid, Bryan \& Freyberg, 1975; p-chlorocinnamic acid, Glusker et al., 1975; p-methylcinnamic acid, Kashino et al., 1989; p-formylcinnamic acid, Nakanishi, Hasegawa \& Mori, 1985). In the photoreactive cinnamic acids which have some additional hydrogen bonds the distances are in the range of 3.54 to $3.78 \AA$ (2hydroxycinnamic acid, Raghunathan \& Pattabhi, 1979; 3-hydroxycinnamic acid, Raghunathan \& Pattabhi, 1981; 4-hydroxycinnamic acid, Bryan \& Forcier, 1980) and in the photostable cinnamic acids which have the additional hydrogen bonds the distances of $4 \cdot 00$ and $4 \cdot 11 \AA$ are found (3,4-dihydroxycinnamic acid, Granda, Beurskens, Beurskens, Krishna \& Desiraju, 1987; cinnamamide, Iwamoto, Kashino \& Haisa, 1989). This fact suggests that the intermolecular hydrogen bonds do not necessarily prohibit the solid-state photoreaction, but diminish the photoreactivity when the C $\cdots \mathrm{C}$ distance is large (above about $4 \AA$).

No decrease in weight was observed during the photoreaction of AC2 and a powder photograph of the irradiated crystals was the same as that of ACD4. This indicates that the photoreaction occurs in the solid state keeping the hydrogen bonds involving the water molecules in AC2.

The authors thank the Crystallographic Research Center, Institute for Protein Research, Osaka University, for the use of the facility.

References

Ashida, T. (1973). HBLS-V and DAPH. The Universal Crystallographic Computing System, Osaka. The Computation Center, Osaka Univ., Japan.
Bryan, R. F. \& Forcier, P. G. (1980). Mol. Cryst. Liq. Cryst. 60, 157-160.
Bryan, R. F. \& Freyberg, D. P. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1835-1840.
Bryan, R. F. \& White, D. H. (1982). Acta Cryst. B38, 1332-1334.
Cohen, M. D., Schmidt, G. M. J. \& Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.
Fuiis, S. (1979). MOLCON. The Universal Crystallographic Computing System, Osaka. The Computation Center, Osaka Univ., Japan.
Glusker, J. P., Zacharias, D. E. \& Carrell, H. L. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 68-74.
Granda, S. G., Beurskens, G., Beurskens, P. T., Krishna, T. S. R. \& Desiraju, G. R. (1987). Acta Cryst. C43, 683-685.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Iwamoto, T., Kashino, S. \& Haisa, M. (1989). Acta Cryst. C45, 1110-1112.

Johnson, C. K. (1971). ORTEP. Report ORNL-3794, revised Oak Ridge National Laboratory, Tennessee, USA.
Jones, W. \& Theocharis, C. R. (1984). J. Cryst. Spectrosc. Res. 14, 447-455.
Kashino, S., Oka, H. \& Haisa, M. (1989). Acta Cryst. C45, 154-157.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Nakanishi, H., Hasegawa, M. \& Mori, T. (1985). Acta Cryst. C41, 70-71
Nakanish, H., Jones, W., Thomas, J. M., Hursthouse, M. B. \& Motevalli, M. (1981). J. Phys. Chem. 85, 3636-3642.
Raghunathan, S. R. \& Pattabhi, V. (1979). Acta Cryst. B35, 214-215.
Raghunathan, S. R. \& Pattabhi, V. (1981). Acta Cryst. B37, 1299-1301.
Sakurai, T. (1967). RSSFR-5. The Universal Crystallographic Computing System (I). Tokyo: The Crystallographic Society of Japan.

Acta Cryst. (1989). C45, 1758-1760

2-Phenylsparteine

By A. Katrusiak, E. Figas, Z. Kaluski and D. Lesiewicz
Department of Crystal Chemistry, Faculty of Chemistry, Adam Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznañ, Poland

(Received 19 January 1989; accepted 8 March 1989)

Abstract

C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2}, \quad M_{r}=310.48\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=7.586(5), \quad b=14.415$ (2),$\quad c=$ 16.936 (4) $\AA, \quad V=1851.9(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.12 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ m.p. $=352-353 \mathrm{~K}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu($ Mo $K \alpha)=0.6 \mathrm{~cm}^{-1}, F(000)=680, T=$ 292 K , final $R=0.044$ for 1489 observed reflections. The quinolizidine moieties both have trans configurations, and piperidine rings A, B, C and D have chair, chair, boat and chair conformations, respectively. The phenyl subtituent at $\mathrm{C}(2)$ is equatorial.

Introduction. This structure determination of 2 phenylsparteine (I) continues our studies on sparteine derivatives (Kałuski, Skolik \& Wiewiórowski, 1978; Szymczak, 1983). Our previous X-ray determinations of 2-phenyl derivatives of sparteine included 2-phenylsparteine $N(16)$-oxide monoperchlorate (Małuszyńska \& Okaya, 1977), 2-(p-tolyl)-2-dehydrosparteine (Małuszyńska, Boczoń \& Kałuski, 1986) and $\Delta^{1(2)}$-dehydro-2-phenylsparteine diperchlorate (Boczoń, Kałuski \& Małuszyńska, 1987). The synthesis of 2-phenylsparteine has been described and the configuration of $\mathrm{C}(2)$, as well as the configuration of the flexible C / D moiety, have been determined on the basis of a comparison of IR spectra of this compound with those of monodeuterated derivatives (Boczoń, 1981). The sparteine molecule consists of two quinolizidine moieties (rings $A-B$ and $C-D)$. The configuration of the quinolizidine moieties is trans-trans for α-isosparteine, trans-cis for sparteine and cis-cis for β-isosparteine (for molecules with all four piperidine rings in chair conformation). The trans form is rigid, while the cis form is flexible. Thus, in sparteine and β-isosparteine the inversion of $\mathrm{N}(16)$, the conversion of ring C from

0108-2701/89/111758-03\$03.00
chair to boat, and the change of configuration of moiety C / D from cis to trans are possible. These compounds, as free bases in the liquid state and in solution, exist predominantly with ring C in the boat form (Bohlmann, Schumann \& Arndt, 1965; Skolik, Krueger \& Wiewiórowski, 1970). The main aim of this X-ray determination was to confirm the spectroscopic results concerning the conformation of ring C and to determine the orientation of the phenyl substituent at $\mathrm{C}(2)$.

Experimental. Crystals of (I) suitable for X-ray analysis were obtained from ethanol solution. Colourless elongated plates, crystal dimensions $0.3 \times 0.3 \times 0.2 \mathrm{~mm}$. CAD-4 diffractometer, graphitemonochromated Mo $K \alpha$ radiation, unit-cell parameters from least-squares fit to 25 reflections $(9 \cdot 9 \leq 2 \theta$ $\leq 13.7^{\circ}$), $2 \theta-\theta$ scan method, variable scan speed ($2 \cdot 0-20 \cdot 0^{\circ} \mathrm{min}^{-1}$) depending on reflection intensity. 1895 reflections up to $2 \theta=50^{\circ}$ were measured: $h 0 \rightarrow 9, k 0 \rightarrow 17, l 0 \rightarrow 6$; no systematic variation in intensity was observed for three control reflections measured every $2 \mathrm{~h}, \mathrm{Lp}$ corrections, no absorption corrections, 1489 reflections with $I \geq 1.96 \sigma(I)$ were considered observed. The structure was solved by direct methods with SHELX76 (Sheldrick, 1976) and the absolute configuration of the molecule was assigned according to the previous determination of the absolute configuration of the naturally occurring sparteine derivatives as $\mathrm{C}(7) S$ and $\mathrm{C}(9) S$ (Klyne, Scopes, Thomas, Skolik, Gawroński \& Wiewiórowski, 1974). The positions of all H atoms were recalculated from the geometry of the molecule after each cycle of refinement, all H atoms were assigned an equal isotropic temperature factor of
© 1989 International Union of Crystallography

