Numbers in parentheses are estimated standard deviations in the least significant digits.

Brl—C5	2.012(2)	N3-C4	1.487 (2)
OI-NI	1.249 (2)	C1-C2	1.401 (3)
O2-N1	1.242(2)	C2-C3	1.501 (3)
03—N2	1.222(3)	C4-C5	1.571(3)
04—N2	1.230(3)	C4—C8	1.537 (3)
NI-CI	1.389(3)	C4-C9	1.528 (3)
N2C1	1.457(3)	C5C6	1.513(3)
N3—C2	1.316(3)	C5-C7	1.525 (3)
			(-)
01-N1-02	121.9 (2)	N3-C4-C5	106.7 (2)
OI-NI-CI	118.4 (2)	N3-C4-C8	110.3 (2)
O2-N1-C1	119.6 (2)	N3-C4-C9	109.9 (2)
O3—N2—O4	124.4 (2)	C5-C4-C8	107.9 (2)
O3-N2-C1	117.7 (2)	C5-C4-C9	110.7 (2)
O4N2C1	117.9 (2)	C8-C4-C9	111.2 (2)
C2-N3-C4	130.3 (2)	Br1-C5-C4	108.4 (1)
NI-C1N2	113.1 (2)	Br1-C5-C6	105.1 (2)
NI-C1-C2	126.5 (2)	Br1C5C7	105.8 (2)
N2C1C2	120.4 (2)	C4-C5-C6	112.7 (2)
N3	120.5 (2)	C4-C5-C7	113.1 (2)
N3-C2-C3	122.0(2)	C6-C5-C7	111.1 (2)
C1-C2-C3	117.6 (2)		
_			
OI-NI-CI-N2	171-3 (4)	NI-CI-C2-N3	4.0 (3)
OI - NI - CI - C2	-11.4(4)	NI-CI-C2-C3	- 1/0.3 (3)
02 - N1 - C1 - N2	- 10-7 (3)	N2-C1-C2-N3	- 178-9 (3)
02-N1-C1-N1	-62.0(3)	$N_2 - C_4 - C_5 - Br_1$	52.0 (2)
03-N2-C1-C2	120.6 (3)	N3-C4-C5-C6	167.9 (3)
04-N2-C1-N1	119-5 (4)	N3-C4-C5-C7	-65.0 (4)
O4-N2-C1-C2	- 57.9 (4)	C8-C4-C5-Br1	170.5 (2)
C4-N3-C2-C1	- 179-3 (3)	C8-C4-C5-C6	- 73.6 (3)
C4—N3—C2—C3	1.0 (3)	C8C4C5C7	53.5 (3)
C2-N3-C4-C5	168.4 (2)	C9-C4-C5-Br1	- 67.5 (2)
$C_2 = N_3 = C_4 = C_8$	51.4(3)	$C_{4} - C_{4} - C_{5} - C_{7}$	48.4 (3)
C2-113-C4-C9	· - /1·0 (2)	$C_{j} \rightarrow C_{j} \rightarrow C_{j$	175.5 (5)

1.457 (3) Å and to an average value of 1.462 (33) Å for 2236 bond distances between sp^2 -hybridized C atoms and nitro-group N atoms extracted from the

1986 release of the Cambridge Structural Database (Allen *et al.*, 1979). Two structures containing the 1,1-dinitroethylene fragment have been solved recently (Gilardi, 1988), both also showing evidence of reduced double-bond character in the C—C bonds.

The molecular structure contains an intramolecular hydrogen bond between H(16) and O(1) with an H(16)…O(1) distance of 2.00 (3) Å and N(3)— H(16)…O(1) angle of 131.9 (9)°. As a result, the O(1)—N(1)—O(2) nitro group is coplanar with an approximate plane defined by the backbone atoms, C(1)—C(2)—N(3)—C(4)—C(5)—C(6).

References

- ALLEN, F. H., BELLARD, S., BRICE, M. D., CARTWRIGHT, B. A., DOUBLEDAY, A., HIGGS, H., HUMMELINK, T., HUMMELINK-PETERS, B. G., KENNARD, O., MOTHERWELL, W. D. S., RODGERS, J. R. & WATSON, D. G. (1979). Acta Cryst. B35, 2331–2339.
- BOYER, J. H., MANIMARAN, T. & PATTERSON, R. T. (1989). J. Chem. Soc. Perkin Trans. 1. In the press.
- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI. Delft Univ. Press, The Netherlands.
- GILARDI, R. D. (1988). Personal communication.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1989). C45, 1753-1758

Topochemical Studies. XI.* Structures of α-Acetylaminocinnamic Acid Dihydrate, its Photodimer and the Tetrahydrate of the Photodimer

By Tetsuyuki Iwamoto, Setsuo Kashino† and Masao Haisa

Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 23 January 1989; accepted 6 March 1989)

= 4.

Abstract. α -Acetylaminocinnamic acid dihydrate (AC2), C₁₁H₁₁NO₃.2H₂O, $M_r = 241 \cdot 24$, monoclinic, $P2_1/a$, $a = 18 \cdot 286$ (2), $b = 6 \cdot 0823$ (3), c =11 \cdot 415 (1) Å, $\beta = 105 \cdot 946$ (8)°, $V = 1220 \cdot 7$ (2) Å³, Z

0108-2701/89/111753-06\$03.00

monoclinic, $P2_1/a$, a = 19.153 (2), b = 6.0987 (4), c = 10.2964 (8) Å, $\beta = 106.424$ (7)°, V = 1153.6 (2) Å³, Z © 1989 International Union of Crystallography

 0.89 mm^{-1} , F(000) = 512, R = 0.047 for 1936 unique

reflections; photodimer, 1,c-3-diacetylamino-t-2,c-4-

diphenylcyclobutane-r-1,3-dicarboxylic acid tetrahydrate (ACD4), $C_{22}H_{22}N_2O_6.4H_2O$, $M_r = 482.48$,

 $D_m = 1.32 (1), \quad D_x = 1.312 \text{ Mg m}^{-3}, \quad \mu =$

1753

^{*} Part X: Kashino, Oka & Haisa (1989).

[†] To whom correspondence should be addressed.

Table 1. Experimental details

	AC2	ACD4	ACD
M.p. (K)	465-467	Above 573	Above 573
Crystal habits	Prismatic b	Prismatic b	Prismatic c
Size of specimen (mm)	$0.20 \times 0.45 \times 0.33$	$0.13 \times 0.40 \times 0.21$	$0.15 \times 0.13 \times 0.35$
Reflections for lattice parameters			
Number	20	20	20
2θ range (°)	20 to 46	28 to 61	17 to 50
Systematic absences	h0/ for h odd	h0/ for h odd	No condition
-	0k0 for k odd	0k0 for k odd	
2θ _{max} (°)	125	125	125
Range of h	-20 to 20	- 22 to 20	- 10 to 9
k	0 to 6	0 to 7	-12 to 12
1	0 to 13	0 to 11	0 to 7
Fluctuation of standard reflections	0.98 to 1.02	0.99 to 1.00	0.98 to 1.01
Number of unique reflections	1936	1829	1671
Number of reflections with $ F_a > o(F_a)$	1885	1809	1608
R _{int}	0.008 for 107	0.012 for 111	0.011 for 178
	hk0 reflections	hk0 reflections	hk0 reflections
Number of parameters	215	215	181
Extinction correction g	7·3 × 10 ⁻⁵	7.3×10^{-6}	No correction
R	0.047	0.038	0.063
wR	0.028	0.028	0.076
Constants for w			
Р	-0.3306	0.0155	-0.0888
<i>q</i>	0.0166	0.0006	0.0086
r	2.9910	3.4278	2.333
S	3.19 .	1.18	2.63
$\Delta \rho \max./\min. (e Å^{-3})$	0.24 - 0.21	0.17 - 0.16	0.29/-0.25
$(\Delta/\sigma)_{\rm max}$ for non-H/H	0.04/0.3	0.14/0.3	0.20/0.5

= 2, $D_m = 1.38$ (2), $D_x = 1.390$ Mg m⁻³, $\mu = 0.94$ mm⁻¹, F(000) = 512, R = 0.038 for 1829 unique reflections; photodimer (ACD), $C_{22}H_{22}N_2O_6$, $M_r =$ 410.41, triclinic, $P\overline{1}$, a = 9.125 (2), b = 10.674 (2), c =6.180 (2) Å, $\alpha = 82.36$ (2), $\beta = 114.79$ (2), $\gamma = 79.65$ (2)°, V = 522.7 (2) Å³, Z = 1, $D_m = 1.28$ (1), $D_x = 1.304$ Mg m⁻³, $\mu = 0.81$ mm⁻¹, F(000) = 216, R = 0.063 for 1671 unique reflections; Cu $K\alpha$ (λ = 1.54178 Å), T = 295 K. α -Acetylaminocinnamic acid is found to be photodimerizable in the crystals of its dihydrate (AC2). The crystal structures of AC2, the photodimer (ACD) and the tetrahydrate of the dimer (ACD4) have been determined. In the crystals of AC2 the C=C double bonds of the nearest neighbours are related by a $\overline{1}$ with a C···C distance of 3.548 (1) Å. The molecule of the dimer has a $\overline{1}$ symmetry in the crystals of ACD and ACD4, which shows that the photoreaction has topochemically occurred in the crystals of AC2 in spite of the existence of the hydrogen-bond networks.

Introduction. In view of crystal engineering, it is desirable to clarify the effect of hydrogen bonding on crystal structure and solid-state photoreaction. In the present work, it is found that α -acetylaminocinnamic acid dihydrate is photodimerized keeping hydrogenbond networks in the crystals to form a tetrahydrate of the photodimer.

Experimental. Experimental details are listed in Table 1. The crystals of AC2 were grown from an ethanol solution by slow evaporation at 298 K. Photodimerization was effected by exposure of the AC2 crystals to sunlight for a month [the method used by Cohen, Schmidt & Sonntag (1964)]. The

crystals of photodimer were prepared from the irradiated sample by vapour diffusion (dimethyl sulfoxide-water system) at 318 K for three weeks. The crystals of ACD4 were grown from the water phase at 298 K and the crystals of ACD from the dimethyl sulfoxide phase at 318 K. For all the crystals D_m was measured by flotation in aqueous KI. Rigaku AFC-5 four-circle diffractometer equipped with rotating anode (Ni-filtered Cu $K\alpha$, at 40kV, 200 mA); ω -2 θ scan method [scan speed 4° min⁻¹ in ω for AC2, 6° min⁻¹ for ACD4 and ACD, scan range in ω , $(1.2 + 0.15 \tan \theta)^{\circ}$ for AC2 and ACD, (1.2 $+0.20 \tan\theta$ ° for ACD4], background measured for 4 s on either side of the peak; three standard reflections recorded every 57 reflections. Lorentz and polarization corrections; no absorption correction. All unique reflections within $(\sin\theta/\lambda)_{max}$ used in structure analyses and refinements. All structures solved by MULTAN78 and refined by blockdiagonal least-squares method (non-H atoms anisotropically). H atoms determined from difference Fourier maps and refined isotropically; $\sum w(|F_o| |F_c|$)² minimized with $w = 1.0/[\sigma(F_o)^2 + p|F_o| +$ $q|F_o|^2$ for $|F_o| > 0$, w = r for $|F_o| = 0$. Correction for secondary extinction with $I_{corr} = I_o(1 + gI_c)$ applied for the strongest reflections of AC2 and ACD4. Atomic scattering factors from International Tables for X-ray Crystallography (1974). Programs: RSSFR-5 (Sakurai, 1967), MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978), HBLS-V and DAPH (Ashida, 1973), MOLCON (Fujii, 1979) and ORTEP (Johnson, 1971). Computations carried out at the Crystallographic Research Center, Institute for Protein Research, Osaka University, and at the Okayama University Computer Center.

Table	2.	Final	atomic	coora	linates	and	equival	ent
isotrop	ic	therma	l param	ieters	$(Å^2)$	with	e.s.d.'s	in
			pare	enthese	es			

Bea	=	4 Σ.1	B.,/	a.	*2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			- II'		

	x	y	Z	D _{eq}
AC2				•
0(1)	0.59917 (6)	0 7351 (3)	0 90715 (0)	2.64 (4)
0(1)	0.38817 (0)	0.7251(2)	0.60713 (9)	3.04 (4)
O(2)	0.53436 (6)	0.9816 (2)	0.67238(9)	3.67 (5)
O(3)	0.42684 (6)	0.5888 (2)	0.8516 (1)	4.55 (5)
O(4W)	0.68941 (7)	0.9919 (2)	0.9190 (2)	6.58 (8)
O(5W)	0.65529 (6)	0.3992 (2)	0.9851(1)	4.25 (5)
N(1)	0.47892(7)	0.4254(2)	0.7188(1)	3.19 (5)
	0.26092 (9)	0 5400 (2)	0 4640 (1)	2.21 (6)
	0.30982 (8)	0.3400 (2)	0.4040 (1)	5.51 (0)
C(2)	0.34639 (9)	0.3305(3)	0.4891 (2)	4.15 (7)
C(3)	0.2833 (1)	0.2337 (3)	0.4126 (2)	5.34 (9)
C(4)	0.2418 (1)	0.3416 (3)	0.3092 (2)	5.65 (9)
C(5)	0.2645 (1)	0.5452(3)	0.2809 (2)	5.24 (8)
CIG	0.32811 (9)	0.6450 (3)	0.3575 (1)	4.02 (7)
C(7)	0.43288 (7)	0.6664 (2)	0.5423 (1)	3.05 (6)
C(n)	0.43200 (7)	0.0004 (2)	0.5425 (1)	2.80 (5)
C(8)	0.47940 (8)	0.0242 (2)	0.6525 (1)	2.69 (3)
C(9)	0.53586 (8)	0.7942 (2)	0.7101 (1)	3.00 (6)
C(10)	0-45176 (8)	0.4206 (2)	0.8164 (1)	3.16 (6)
C(11)	0.4540(1)	0.2029 (3)	0.8793 (2)	4.60 (8)
• •		. ,		
ACD4				
ACD4				
O(1)	0.58829 (5)	0.6532 (2)	0.80803 (9)	2-40 (4)
O(2)	0.52934 (6)	0.8995 (2)	0.6565 (1)	2.75 (4)
O(3)	0.42732 (6)	0.5794(2)	0.8019 (1)	3.16 (4)
0(411)	0.68507 (7)	0.9292 (2)	0.9277 (2)	4.30 (6)
0(54/)	0.65861 (7)	0.3427(2)	1.0171 (1)	3.84 (5)
N(1)	0.49522 (6)	0.2400 (2)	0.4050 (1)	1.00 (4)
N(I)	0.46555 (0)	0.5499 (2)	0.0939(1)	1.33 (4)
C(1)	0.36751 (7)	0.5283(2)	0.4312 (1)	2.08 (3)
C(2)	0.33976 (8)	0.3238 (2)	0.4510(1)	2.55 (6)
C(3)	0.26678 (9)	0.2770 (3)	0.3939 (2)	3.14 (6)
C(4)	0.22070 (8)	0.4316 (3)	0.3168 (2)	3.46 (7)
C(5)	0.24790 (9)	0.6350 (3)	0.2957 (2)	3.38 (7)
CÌG	0.32047 (8)	0.6832 (3)	0.3532 (2)	2.64 (6)
C(7)	0.44705 (7)	0.5873(2)	0.4751(1)	1.78 (5)
	0 44705 (7)	0 5141 (2)	0 4751 (1)	1.91 (5)
	0.50349 (7)	0.5141(2)	0.6094 (1)	1.01 (5)
C(9)	0.53999 (7)	0.7110(2)	0.6946 (1)	1.98 (5)
C(10)	0.45131 (7)	0.3953 (2)	0.7903 (1)	2.02 (5)
C(11)	0.44827 (8)	0.2094 (3)	0.8842 (1)	2.91 (6)
ACD				
0(1)	0.0009 (2)	0.6125 (2)	0.1260 (2)	4.01 (6)
0(1)	0.0998 (2)	0.0133(2)	0.1209 (2)	4.01 (0)
O(2)	0.2/43(2)	0.5365 (2)	-0.0203 (2)	4.13 (0)
O(3)	0.1788 (2)	0.3183 (2)	0.2813 (3)	4.17 (7)
N(1)	0.2906 (2)	0.4348 (2)	0.5543 (3)	3.62 (7)
C(1)	0.6057 (3)	0.2632 (2)	0.5771 (4)	3.81 (9)
C(2)	0.6085 (3)	0.2104 (2)	0.7977 (4)	4.8 (1)
cai	0.6721(5)	0.0776 (3)	0.9001 (5)	7.3 (2)
C(4)	0.7312(7)	-0.0032 (3)	0.7904 (7)	11.8 (3)
C(4)	0 7249 (9)	0.0475(3)	0.5772 (8)	12.2 (2)
	0.7348 (8)	0.1000 (3)	0.3772 (8)	13.3 (3)
C(6)	0.0725 (5)	0.1800 (3)	0.4/11 (5)	8.2 (2)
C(7)	0.5402 (2)	0.4070 (2)	0.4542 (3)	3.06 (8)
C(8)	0.3696 (2)	0.4913 (2)	0.4188 (3)	3.13 (8)
C(9)	0.2427 (2)	0.5470 (2)	0.1489 (3)	3.29 (8)
cùó	0.2015 (3)	0.3494 (2)	0.4771 (4)	3.69 (9)
CUD	0.1323(4)	0.2938 (3)	0.6366 (5)	6.7 (2)
	0 1323 (-)	0 2750 (5)	0.0200 (2)	0 / (2)

**Discussion.** The final atomic parameters are listed in Table 2.* Thermal ellipsoids of the molecules are shown in Fig. 1, with atomic numbering. Bond lengths and angles are listed in Table 3. Stereoscopic views of the crystal structures are shown in Fig. 2. Geometries of the hydrogen bonds are summarized in Table 4.

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters, bond lengths and angles involving H atoms, and selected torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52014 (36 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.



Fig. 1. The thermal ellipsoids (50% probability) with atomic numbering. The H atoms attached to the O and N atoms are represented as spheres equivalent to  $B = 1.0 \text{ Å}^2$ . (a) AC2, the molecule related by a  $\overline{1}$  is also drawn for the sake of comparison with that of ACD4. For (b) ACD4 and (c) ACD, the atoms related by a  $\overline{1}$  are denoted with a prime.

Table 3. Bond lengths (Å) and angles (°) with e.s.d.'s in parentheses

	AC2	ACD4	ACD
O(1)—C(9)	1.318 (1)	1.316 (1)	1.310 (3)
O(2)-C(9)	1.216 (1)	1.213 (1)	1.209 (3)
O(3)-C(10)	1.231 (1)	1.232 (1)	1.240 (3)
N(1)-C(8)	1.429 (1)	1.446 (1)	1.454 (3)
N(1) - C(10)	1.339 (1)	1.343 (1)	1.333 (3)
C(1) - C(2)	1.399 (3)	1.393 (2)	1.392 (4)
C(1)-C(6)	1.399 (3)	1.393 (2)	1.373 (6)
C(1) - C(7)	1.467 (2)	1.505 (1)	1.507 (4)
C(2)-C(3)	1.374 (3)	1.384 (3)	1.380 (6)
C(3)-C(4)	1.381 (3)	1.379 (3)	1.338 (9)
C(4)-C(5)	1 373 (3)	1.386 (3)	1.372 (10)
C(5)-C(6)	1.388 (3)	1.380 (3)	1.380 (9)
C(7)—C(8)	1.334 (1)	1.560 (1)	1.562 (3)
C(8)—C(9)	1.482 (1)	1.534 (1)	1.532 (3)
C(10) - C(11)	1.501 (2)	1.502 (2)	1.491 (4)
C(7)—C(8')		1.582 (1)	1.574 (3)
	100 6 (1)	100 6 (1)	101.7 (2)
O(1) - C(9) - O(2)	122.5 (1)	123.5 (1)	124.7 (2)
U(1) - U(9) - U(8)	114.06 (9)	112.95 (9)	111-2 (2)
U(2) - U(9) - U(8)	123.4 (1)	123.3 (1)	123.9 (2)
O(3) = O(10) = N(1)	120.6 (1)	121.9 (1)	120-7 (2)
U(3) - C(10) - C(11)	122.7 (1)	122.8 (1)	122.3 (2)
N(1) - C(10) - C(11)	116.7 (1)	115-2 (1)	117.0 (2)
$N(1) \rightarrow C(8) \rightarrow C(9)$	11/-33 (9)	109.86 (8)	110.2 (2)
C(1) - C(2) - C(3)	120.8 (2)	120.2 (2)	120.3 (3)
C(1) = C(0) = C(3)	120.7(2)	120.8 (2)	120.5 (5)
C(1) - C(7) - C(8)	131.0 (1)	123.91 (9)	122.3 (2)
C(1) - C(7) - C(8)		11/.00 (8)	120.3 (2)
R(1) = C(0) = C(7)	120 5 (2)	110.71 (8)	110.9 (2)
C(2) - C(3) - C(4)	120.3 (2)	120.6 (2)	121.2 (5)
C(3) - C(4) - C(3)	119.9 (2)	119.0 (2)	119.4 (0)
C(4) - C(3) - C(0)	120.1 (2)	120.1 (2)	120.0 (0)
C(0) - C(1) - C(2)	116.0 (2)	116.7 (2)	110.0 (3)
C(0) = C(1) = C(1)	110.1 (2)	110.5 (1)	118.3 (3)
C(7) = C(1) = C(2)	123.9 (2)	124.5 (1)	123.7 (3)
C(7) = C(8) = C(9)	118.09 (9)	111.80 (8)	113-1 (2)
C(1) = C(0) = N(1) C(0) = N(1) = C(10)	124-37 (9)	121.12 (9)	117.3 (2)
C(0) = C(1)	121-21 (9)	123.38 (9)	121.6 (2)
C(1) = C(0) = C(1)		07.03 (7)	50·1 (2)
(0) - (1) - (0)	,	90.17(7)	(2) ۲۰ <del>۷</del> (2)
(r) = (r) = (r)		111.22 (0)	113.2 (2)

The monomer molecules in AC2 are arranged nearly parallel to ( $\overline{4}03$ ). The molecules related by a b translation are held together by N-H-O hydrogen bonds between the carboxyl groups and the amide groups. The molecules related by a  $\overline{1}$  at  $(0,\frac{1}{2},0)$  are held together by two O-H.O hydrogen bonds through O(5W) and the molecules related by a twofold screw axis at  $x = \frac{1}{4}$  and z = 0 are held together by the other O—H…O hydrogen bonds through O(4W)and O(5W) between the carboxyl groups and the amide groups. O(4W) is linked to O(5W) (x, 1 + y, z)by an additional O-H···O hydrogen bond. Thus, the two-dimensional hydrogen-bond networks are formed on (001). The crystals are grown along b. The C(7)...C(8) distance between the molecules related by a  $\overline{1}$  at  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$  is 3.548 (1) Å, the interplanar spacing being 3.444(1) Å for the plane through C(1), C(7), C(8) and C(9).

The crystals of ACD4 belong to the same space group as those of AC2 and their cell dimensions are similar. Hydrogen-bond networks in ACD4 are also similar to those in AC2. The similarity in the crystal structures of the monomer and the photodimer is remarkable as found in benzylidenecyclopentanone derivatives and their photodimers (Nakanishi, Jones, Thomas, Hursthouse & Motevalli, 1981; Jones & Theocharis, 1984). The atom movement  $\Delta d$  in the solid-state photoreaction estimated by the method of Nakanishi *et al.* (1981) is largest at C(8), 1.010 Å, and is smallest at C(1), 0.344 Å;  $\Delta d = 0.539$  Å for O(4W) and 0.452 Å for O(5W).

The periods of the axes a, b and c in ACD correspond to c, (a + b)/2 and b in ACD4. In the crystals of ACD the molecules related by a c translation are held together by intermolecular N—H…O hydrogen bonds between the carboxyl groups and amide groups, and there are additional O—H…O hydrogen bonds between these groups of molecules related by a  $\overline{1}$  at  $(0,\frac{1}{2},0)$  as found in ACD4. However, in ACD there exist no water molecules which can participate in the hydrogen bonds along a twofold screw axis as in ACD4 and thus the space group descends to  $P\overline{1}$ from  $P2_1/a$  of ACD4.

(a)

(*b*)



## Table 4. Geometry of hydrogen bonds

Donor (D)	Acceptor (A)	D…A (Å)	H…A (Å)	<i>D</i> —H…A (°)
AC2	·····	,	· · /	( )
N(1')	O(2")	2.982 (1)	2.12 (2)	168 (2)
O(1')	O(4W)	2.528 (2)	1.53 (2)	170 (2)
O(5W)	O(1')	2.862 (1)	2.01(2)	168 (2)
O(4W)	O(5W ⁱⁱⁱ )	2.712 (2)	1.89 (2)	178 (2)
O(5W)	O(3")	2 697 (1)	1.84 (2)	172 (2)
O(4 <i>W</i> ¹ )	O(5W*)	2.806 (2)	1.90 (2)	172 (2)
ACD4				
N(1')	O(2")	2.935(1)	2.05 (2)	174 (2)
0(1)	O(4 W1)	2.549 (2)	1.55 (2)	168 (2)
O(5W)	O(1')	2.897 (1)	2.00 (2)	173 (2)
O(4W)	O(5W")	2.780(2)	1.86 (3)	171 (3)
O(5W)	O(3 ¹ )	2.853 (1)	1.94 (3)	176 (3)
O(4 <i>W</i> *)	O(5W')	2.933 (2)	2.09 (3)	171 (3)
ACD				
N(1)	O(2")	3.023 (3)	2.11 (2)	175 (2)
O(1')	O(2")	2.613 (3)	1.69 (3)	158 (3)

Symmetry code: For AC2 and ACD4 (i) x, y, z; (ii) x, -1 + y, z; (iii) x, 1 + y, z; (iv) 1 - x, 1 - y, 2 - z; (v)  $\frac{3}{2} - x$ ,  $\frac{1}{2} + y$ , 2 - z. For ACD (i) x, y, z; (ii) x, y, 1 + z; (iii) -x, 1 - y, -z.

For the monomer molecule in AC2 the torsion angles C(2) - C(1) - C(7) - C(8),C(1) - C(7) - C(7)C(8) - C(9), C(1) - C(7) - C(8) - N(1), C(7) - C(8) - C(N(1)—C(10) and C(7)—C(8)—C(9)—O(2)are -177.0(1), 3.2(2),-3.1(2),  $-107 \cdot 1(1)$ and  $12 \cdot 1$  (2)°, respectively. This means that the benzene ring, the C=C double bond and the carboxyl group are nearly coplanar, and the amide group is nearly perpendicular to these portions. The length of the C(7) = C(8) bond is typical for cinnamic acids (Glusker, Zacharias & Carrell, 1975). The bond and angles C(2) - C(1) - C(7), C(1) - C(7) - C(8)C(7)—C(8)—N(1) are widened by intramolecular repulsions of  $C(2)\cdots C(8)$ , 3.176 (2) Å and  $C(2)\cdots N(1)$ , 3.097 (2) Å, as found in  $\alpha$ -methylcinnamic acid (Bryan & White, 1982).

The cyclobutane ring in ACD4 has a  $\overline{1}$  as expected from the crystal structure of AC2 (the atoms related by the  $\overline{1}$  are denoted with a prime hereafter). The conformations of the exocyclic bonds are cis for C(1)-C(7)-C(8)-N(1),  $10.0(1)^{\circ}$  and gauche for  $C(1) - C(7) - C(8') - N(1'), 105.3 (1)^{\circ}.$ Thus, the photoreaction has topochemically occurred between C(7) and C(8') in the crystals of AC2 (Kashino, Oka & Haisa, 1989). The angles C(1)-C(7)-C(8) and C(7)—C(8)—N(1) are enlarged by intermolecular repulsions C(3)...C(5)  $(\frac{1}{2} - x, \frac{1}{2} + y, 1 - z)$ , 3.399 (3) Å. The C(7)—C(8') bond is lengthened by intramolecular repulsions  $C(1)\cdots C(9')$ , 2.871 (1) Å and  $C(2)\cdots$ C(9'), 3.090 (2) Å.

The cyclobutane ring in ACD also has a  $\overline{1}$ . The torsion angle C(1)—C(7)—C(8)—N(1) is  $13\cdot1(3)^{\circ}$  and C(1)—C(7)—C(8')—N(1') is  $111\cdot9(2)^{\circ}$ . The widening of the angles C(1)—C(7)—C(8) and C(7)—C(8)—N(1) is less than that in ACD4 because of the absence of the intermolecular repulsions. The C(7)—C(8') bond is lengthened as in ACD4. The thermal vibration of the phenyl ring is enlarged

because of the loose packing, the shortest distance being 4.05 (1) Å for C(4)...C(5) (1 - x, -y, 1 - z).

In the photoreactive cinnamic acids which have no additional intermolecular hydrogen bonds other than those between the carboxylic groups, the nearest  $C \cdots C$  distances between the C = C bonds are in the range of 3.66 to 4.84 Å (cinnamic acid, Bryan & Freyberg, 1975; p-chlorocinnamic acid, Glusker et al., 1975; p-methylcinnamic acid, Kashino et al., 1989; p-formylcinnamic acid, Nakanishi, Hasegawa & Mori, 1985). In the photoreactive cinnamic acids which have some additional hydrogen bonds the distances are in the range of 3.54 to 3.78 Å (2hydroxycinnamic acid, Raghunathan & Pattabhi, 1979; 3-hydroxycinnamic acid, Raghunathan & Pattabhi, 1981; 4-hydroxycinnamic acid, Bryan & Forcier, 1980) and in the photostable cinnamic acids which have the additional hydrogen bonds the distances of 4.00 and 4.11 Å are found (3,4-dihydroxycinnamic acid, Granda, Beurskens, Beurskens, Krishna & Desiraju, 1987; cinnamamide, Iwamoto, Kashino & Haisa, 1989). This fact suggests that the intermolecular hydrogen bonds do not necessarily prohibit the solid-state photoreaction, but diminish the photoreactivity when the C…C distance is large (above about 4 Å).

No decrease in weight was observed during the photoreaction of AC2 and a powder photograph of the irradiated crystals was the same as that of ACD4. This indicates that the photoreaction occurs in the solid state keeping the hydrogen bonds involving the water molecules in AC2.

The authors thank the Crystallographic Research Center, Institute for Protein Research, Osaka University, for the use of the facility.

#### References

- ASHIDA, T. (1973). HBLS-V and DAPH. The Universal Crystallographic Computing System, Osaka. The Computation Center, Osaka Univ., Japan.
- BRYAN, R. F. & FORCIER, P. G. (1980). Mol. Cryst. Liq. Cryst. 60, 157-160.
- BRYAN, R. F. & FREYBERG, D. P. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1835–1840.
- BRYAN, R. F. & WHITE, D. H. (1982). Acta Cryst. B38, 1332–1334.
   COHEN, M. D., SCHMIDT, G. M. J. & SONNTAG, F. I. (1964). J. Chem. Soc. pp. 2000–2013.
- FUJII, S. (1979). MOLCON. The Universal Crystallographic Computing System, Osaka. The Computation Center, Osaka Univ., Japan.
- GLUSKER, J. P., ZACHARIAS, D. E. & CARRELL, H. L. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 68–74.
- GRANDA, S. G., BEURSKENS, G., BEURSKENS, P. T., KRISHNA, T. S. R. & DESIRAJU, G. R. (1987). Acta Cryst. C43, 683–685.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- IWAMOTO, T., KASHINO, S. & HAISA, M. (1989). Acta Cryst. C45, 1110-1112.

JOHNSON, C. K. (1971). ORTEP. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.

JONES, W. & THEOCHARIS, C. R. (1984). J. Cryst. Spectrosc. Res. 14, 447-455.

KASHINO, S., OKA, H. & HAISA, M. (1989). Acta Cryst. C45, 154–157.

MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1989). C45, 1758-1760

- Nakanishi, H., Hasegawa, M. & Mori, T. (1985). Acta Cryst. C41, 70-71.
- NAKANISHI, H., JONES, W., THOMAS, J. M., HURSTHOUSE, M. B. & MOTEVALLI, M. (1981). J. Phys. Chem. 85, 3636–3642.
- RAGHUNATHAN, S. R. & PATTABHI, V. (1979). Acta Cryst. B35, 214–215.
- RAGHUNATHAN, S. R. & PATTABHI, V. (1981). Acta Cryst. B37, 1299–1301.
- SAKURAI, T. (1967). RSSFR-5. The Universal Crystallographic Computing System (I). Tokyo: The Crystallographic Society of Japan.

# 2-Phenylsparteine

BY A. KATRUSIAK, E. FIGAS, Z. KAŁUSKI AND D. LESIEWICZ

Department of Crystal Chemistry, Faculty of Chemistry, Adam Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland

## (Received 19 January 1989; accepted 8 March 1989)

Abstract.  $C_{21}H_{30}N_2$ ,  $M_r = 310.48$ , orthorhombic,  $P2_{1}2_{1}2_{1}$ , a = 7.586(5),b = 14.415(2),c =V = 1851.9 (4) Å³, 16.936 (4) Å. Z = 4. $D_r =$  $1.12 \text{ g cm}^{-3}$ , m.p. = 352 - 353 K,  $\lambda$ (Mo K $\alpha$ ) =  $0.71069 \text{ Å}, \mu(\text{Mo } K\alpha) = 0.6 \text{ cm}^{-1}, F(000) = 680, T =$ 292 K, final R = 0.044 for 1489 observed reflections. The quinolizidine moieties both have trans configurations, and piperidine rings A, B, C and D have chair, chair, boat and chair conformations, respectively. The phenyl subtituent at C(2) is equatorial.

Introduction. This structure determination of 2phenylsparteine (I) continues our studies on sparteine derivatives (Kałuski, Skolik & Wiewiórowski, 1978; Szymczak, 1983). Our previous X-ray determinations of 2-phenyl derivatives of sparteine 2-phenylsparteine included N(16)-oxide monoperchlorate (Małuszyńska & Okaya, 1977), 2-(ptolyl)-2-dehydrosparteine (Małuszyńska, Boczoń & Kałuski, 1986) and  $\Delta^{1(2)}$ -dehydro-2-phenylsparteine diperchlorate (Boczoń, Kałuski & Małuszyńska, 1987). The synthesis of 2-phenylsparteine has been described and the configuration of C(2), as well as the configuration of the flexible C/D moiety, have been determined on the basis of a comparison of IR spectra of this compound with those of monodeuterated derivatives (Boczoń, 1981). The sparteine molecule consists of two quinolizidine moieties (rings A-B and C-D). The configuration of the quinolizidine moieties is trans-trans for  $\alpha$ -isosparteine, trans-cis for sparteine and cis-cis for B-isosparteine (for molecules with all four piperidine rings in chair conformation). The trans form is rigid, while the cis form is flexible. Thus, in sparteine and  $\beta$ -isosparteine the inversion of N(16), the conversion of ring C from

chair to boat, and the change of configuration of moiety C/D from *cis* to *trans* are possible. These compounds, as free bases in the liquid state and in solution, exist predominantly with ring C in the boat form (Bohlmann, Schumann & Arndt, 1965; Skolik, Krueger & Wiewiórowski, 1970). The main aim of this X-ray determination was to confirm the spectroscopic results concerning the conformation of ring C and to determine the orientation of the phenyl substituent at C(2).

Experimental. Crystals of (I) suitable for X-ray analysis were obtained from ethanol solution. Colourless elongated plates, crystal dimensions  $0.3 \times 0.3 \times 0.2$  mm. CAD-4 diffractometer, graphitemonochromated Mo Ka radiation, unit-cell parameters from least-squares fit to 25 reflections (9.9  $\leq 2\theta$  $\leq 13.7^{\circ}$ ),  $2\theta - \theta$  scan method, variable scan speed  $(2.0-20.0^{\circ} \text{ min}^{-1})$  depending on reflection intensity. 1895 reflections up to  $2\theta = 50^{\circ}$  were measured:  $h \to 9$ ,  $k \to 17$ ,  $l \to 6$ ; no systematic variation in intensity was observed for three control reflections measured every 2 h, Lp corrections, no absorption corrections, 1489 reflections with  $I \ge 1.96\sigma(I)$  were considered observed. The structure was solved by direct methods with SHELX76 (Sheldrick, 1976) and the absolute configuration of the molecule was assigned according to the previous determination of the absolute configuration of the naturally occurring sparteine derivatives as C(7) S and C(9) S(Klyne, Scopes, Thomas, Skolik, Gawroński & Wiewiórowski, 1974). The positions of all H atoms were recalculated from the geometry of the molecule after each cycle of refinement, all H atoms were assigned an equal isotropic temperature factor of

0108-2701/89/111758-03\$03.00

© 1989 International Union of Crystallography